Indicaciones y resultados de la cementación de la lámina en el enclavado del fémur proximal
Resumen
Objetivo del trabajo Analizar los resultados de la cementación de la lámina espiral del clavo PFNA en diferentes indicaciones. Material y métodos Se realizó la técnica de cementación con PMMA (polimetilmetacrilato) de lámina espiral tras enclavado convencional con PFNA en doce pacientes con una edad media de 75 años. Se analizaron las indicaciones de dicha técnica, las complicaciones y el resultado tras un seguimiento medio de 11,1 meses. Resultados Las indicaciones fueron tres casos de pseudoartrosis, dos fallos del implante tipo cut-out, dos tipo pull-out, una fractura periimplante, un error técnico en el enclavado primario y tres metástasis en cuello femoral. En dos casos se apreció salida de PMMA intraarticular, sin impacto clínico asociado. El cemento se distribuyó en el mismo número de casos en la punta, en el cuello y en ambos (33%). Hubo un caso de movilización de material durante el seguimiento, en un paciente con metástasis en cuello femoral que sufrió fallo tipo cut-out. Todas las fracturas consolidaron en 18,67 semanas. Conclusiones La cementación de la lámina espiral en el enclavado cefalomedular en fracturas pertrocantéreas es una opción de rescate en casos de fallo del material, fracturas periimplante o pseudoartrosis, con buenos resultados y escasas complicaciones.Citas
Kammerlander C et al. Long-term results of augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 2014;134:343-349. https://www.ncbi.nlm.nih.gov/pubmed/24297215
Sermon A et al. Biomechanical evaluation of bone-cement augmented proximal femoral nail antirotation blades in a polyurethane foam model with low density. Clinical Biomechanics 2012;27:71-76. https://www.ncbi.nlm.nih.gov/pubmed/21824697
Von Rüden C et al. Failure of fracture fixation in osteoporotic bone. Injury 2016 Jun;47S2:S3-S10. https://www.ncbi.nlm.nih.gov/pubmed/27338224
Kammerlander C et al. The use of augmentation techniques in osteoporotic fracture fixation. Injury 2016 Jun;47S2:S36-S43. https://www.ncbi.nlm.nih.gov/pubmed/27338226
Kammerlander C et al. Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA). A multicentre randomized controlled trial. Injury 2018 Aug;49(8):1436-1444. https://www.ncbi.nlm.nih.gov/pubmed/29724590
Brunner A et al. What is the optimal salvage procedure for cut-out after surgical fixation of trochanteric fractures with PFNA or TFN? A multicenter study. Injury 2016;47:432-438. https://www.ncbi.nlm.nih.gov/pubmed/26748415
Fensky F et al. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures - a biomechanical cadaver study. Injury 2013;44:802-807. https://www.ncbi.nlm.nih.gov/pubmed/23545113
Scola A et al. The PFNA augmented in revisión surgery of proximal femur fractures. The Open Orthopaedics Journal 2014;8:232-236. https://www.ncbi.nlm.nih.gov/pubmed/25136390
Erhart S et al. Is augmentation a posible salvage procedure after lateral migration of the proximal femoral nail antirotation? Arch Orthop Trauma Surg 2012;132:1577-1581. https://www.ncbi.nlm.nih.gov/pubmed/22752458
Moore D et al. Hip screw augmentation with an in situ-setting calcium phosphonate cement: an in vitro biomechanical analysis. J Orthop Trauma. 1997 Nov;11(8):577-83. https://www.ncbi.nlm.nih.gov/pubmed/9415864
Neuerburg C et al. Trochanteric fragility fractures: treatment using the cement-augmented proximal nail antirotation. Oper Orthop Traumatol 2016 Jun;28(3):164-76. https://www.ncbi.nlm.nih.gov/pubmed/27245659
Mattsson P et al. Stability of internally fixed femoral neck fractures augmented with resorbable cement: a prospective randomized study using radiostereometry. Scand J Surg 2003;92:215-219. https://www.ncbi.nlm.nih.gov/pubmed/14582545
Lindner T et al. Fractures of the hip and osteoporosis. The role of bone substitutes. J Bone Joint Surg Br. 2009;91-B:294-303. https://www.ncbi.nlm.nih.gov/pubmed/19258602
Kammerlander C et al. Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury 2011;42:1484-1490. https://www.ncbi.nlm.nih.gov/pubmed/21855063
Boner V et al. Temperature evaluation during PMMA screw augmentation in osteoporotic bone-an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 2009 Aug;90(2):842-8. https://www.ncbi.nlm.nih.gov/pubmed/19353575
Sermon A et al. Cement augmentation of hip implants in osteoporotic bone: how much cement is needed and where should it go? J Orthop Res. 2014 Mar;32(3):362-8. https://www.ncbi.nlm.nih.gov/pubmed/24259367
Li S et al. Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 1999 Nov;17:891-899. https://www.ncbi.nlm.nih.gov/pubmed/10632456
Varga P et al. Prophylactic augmentation of the osteoporotic proximal femur – mission impossible? Bonekey Rep 2016 Dec 7;5:854. https://www.ncbi.nlm.nih.gov/pubmed/28018586
Raas C et al. Prophylactic augmentation of the proximal femur: an investigation of two techniques. Arch Orthop Trauma Surg 2016;136:345-351. https://www.ncbi.nlm.nih.gov/pubmed/26749332
Hanke M et al. Prevention of cement leakage into the hip joint by a standard cement plug during PFN-A cement augmentation: a technical note. Arch Orthop Trauma Surg 2016;136:747-750. https://www.ncbi.nlm.nih.gov/pubmed/27010468
Erhart s et al. Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the proximal femur nail antirotation. Injury 2011; 42:322-1327. https://www.ncbi.nlm.nih.gov/pubmed/21601203
Mereddy P et al. The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury 2009;40:428-432. https://www.ncbi.nlm.nih.gov/pubmed/19230885
Tucker A et al. Fatigue failure of the cephalomedullary nail: revision options, outcomes and review of the literature. Eur J Orthop Surg Traumatol. 2018 Apr;28(3):511-520. https://www.ncbi.nlm.nih.gov/pubmed/29043506
Goffin JM et al. Does bone compaction around the helical blade of a proximal femoral nail anti-rotation (PFNA) decrease the risk of cut-out?: A subject-especific computational study. Bone Joint Res 2013 May;2(5):79-83. https://www.ncbi.nlm.nih.gov/pubmed/23673407
Born CT et al. Hip screw migration testing: first results for hip screws and helical blade utilizing a new oscillating test method. J Orthop Res 2011 May;29(5):760-6. https://www.ncbi.nlm.nih.gov/pubmed/20830738
Kraus M et al. Clinical evaluation of PFNA (R) and relationship between the tip-apex distance and mechanical failure. Unfallchirurg 2011;114(6):470-478. https://www.ncbi.nlm.nih.gov/pubmed/21626197
Von der Linden P et al. Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 2006;24:2230-2237. https://www.ncbi.nlm.nih.gov/pubmed/17001708
Bartucci EJ et al. The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 1985 Sep;67(7):1094-1107. https://www.ncbi.nlm.nih.gov/pubmed/4030829
Yamada K et al. Clinical outcome of percutaneous osteoplasty for pain caused by metastatic bone tumors in the pelvis and femur. J Anesth 2007;21:277-81. https://www.ncbi.nlm.nih.gov/pubmed/17458661
Hierholzer J et al. Percutaneous osteoplasty as a treatment for painful malignant bone lesions of the pelvis and femur. J Vasc Interv Radiol 2003 Jun;14(6):773-7. https://www.ncbi.nlm.nih.gov/pubmed/12817045
Kang HG et al. The treatment of metastasis to the femoral neck using percutaneous hollow perforated screws with cement augmentation. J Bone Joint Surg Br 2009;91-B:1078-82. https://www.ncbi.nlm.nih.gov/pubmed/19651838
Sermon A et al. Potential of polymethylmethacrylate cement-augmented helical proximal nail antirotation blades to improve implant stability – a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg. 2012 Feb;72(2):E54-9. https://www.ncbi.nlm.nih.gov/pubmed/22439233
Stoffel K et al. A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clinical Biomechanics 2008;23:45-51. https://www.ncbi.nlm.nih.gov/pubmed/17964016
Hisatome T et al. Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement. J Biomed Mater Res. 2002 Mar;59(3):490-8. https://www.ncbi.nlm.nih.gov/pubmed/11774307
Fliri L et al. Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 2012;72(4):1098-1101. https://www.ncbi.nlm.nih.gov/pubmed/22491634
Goetzen M et al. Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage? An in vivo study in sheep stifle joints. Medicine (Baltimore) 2015 Jan;94(3):e414. https://www.ncbi.nlm.nih.gov/pubmed/25621690
Mattsson P et al. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br. 2005 Sep;87(9):1203-1209. https://www.ncbi.nlm.nih.gov/pubmed/16129742
Mattsson P et al. Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures: a randomized study of 118 patientes. Acta Orthop 2006;77:251-6. https://www.ncbi.nlm.nih.gov/pubmed/16752286
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).