Indicaciones y resultados de la cementación de la lámina en el enclavado del fémur proximal

  • Andrés José Sánchez Aguilera Hospital Universitario Virgen de las Nieves de Granada
  • Sergio Quirante García Hospital Universitario Clínico San Cecilio
  • Francisco Manuel Requena Ruiz Hospital Universitario Virgen de las Nieves
Palabras clave: Fractura de cadera, Fracturas osteoporóticas, Enclavado intramedular, Cemento óseo

Resumen

Objetivo del trabajo Analizar los resultados de la cementación de la lámina espiral del clavo PFNA en diferentes indicaciones. Material y métodos Se realizó la técnica de cementación con PMMA (polimetilmetacrilato) de lámina espiral tras enclavado convencional con PFNA en doce pacientes con una edad media de 75 años. Se analizaron las indicaciones de dicha técnica, las complicaciones y el resultado tras un seguimiento medio de 11,1 meses. Resultados Las indicaciones fueron tres casos de pseudoartrosis, dos fallos del implante tipo cut-out, dos tipo pull-out, una fractura periimplante, un error técnico en el enclavado primario y tres metástasis en cuello femoral. En dos casos se apreció salida de PMMA intraarticular, sin impacto clínico asociado. El cemento se distribuyó en el mismo número de casos en la punta, en el cuello y en ambos (33%). Hubo un caso de movilización de material durante el seguimiento, en un paciente con metástasis en cuello femoral que sufrió fallo tipo cut-out. Todas las fracturas consolidaron en 18,67 semanas. Conclusiones La cementación de la lámina espiral en el enclavado cefalomedular en fracturas pertrocantéreas es una opción de rescate en casos de fallo del material, fracturas periimplante o pseudoartrosis, con buenos resultados y escasas complicaciones.

Citas

Kammerlander C et al. Long-term results of augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 2014;134:343-349. https://www.ncbi.nlm.nih.gov/pubmed/24297215

Sermon A et al. Biomechanical evaluation of bone-cement augmented proximal femoral nail antirotation blades in a polyurethane foam model with low density. Clinical Biomechanics 2012;27:71-76. https://www.ncbi.nlm.nih.gov/pubmed/21824697

Von Rüden C et al. Failure of fracture fixation in osteoporotic bone. Injury 2016 Jun;47S2:S3-S10. https://www.ncbi.nlm.nih.gov/pubmed/27338224

Kammerlander C et al. The use of augmentation techniques in osteoporotic fracture fixation. Injury 2016 Jun;47S2:S36-S43. https://www.ncbi.nlm.nih.gov/pubmed/27338226

Kammerlander C et al. Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA). A multicentre randomized controlled trial. Injury 2018 Aug;49(8):1436-1444. https://www.ncbi.nlm.nih.gov/pubmed/29724590

Brunner A et al. What is the optimal salvage procedure for cut-out after surgical fixation of trochanteric fractures with PFNA or TFN? A multicenter study. Injury 2016;47:432-438. https://www.ncbi.nlm.nih.gov/pubmed/26748415

Fensky F et al. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures - a biomechanical cadaver study. Injury 2013;44:802-807. https://www.ncbi.nlm.nih.gov/pubmed/23545113

Scola A et al. The PFNA augmented in revisión surgery of proximal femur fractures. The Open Orthopaedics Journal 2014;8:232-236. https://www.ncbi.nlm.nih.gov/pubmed/25136390

Erhart S et al. Is augmentation a posible salvage procedure after lateral migration of the proximal femoral nail antirotation? Arch Orthop Trauma Surg 2012;132:1577-1581. https://www.ncbi.nlm.nih.gov/pubmed/22752458

Moore D et al. Hip screw augmentation with an in situ-setting calcium phosphonate cement: an in vitro biomechanical analysis. J Orthop Trauma. 1997 Nov;11(8):577-83. https://www.ncbi.nlm.nih.gov/pubmed/9415864

Neuerburg C et al. Trochanteric fragility fractures: treatment using the cement-augmented proximal nail antirotation. Oper Orthop Traumatol 2016 Jun;28(3):164-76. https://www.ncbi.nlm.nih.gov/pubmed/27245659

Mattsson P et al. Stability of internally fixed femoral neck fractures augmented with resorbable cement: a prospective randomized study using radiostereometry. Scand J Surg 2003;92:215-219. https://www.ncbi.nlm.nih.gov/pubmed/14582545

Lindner T et al. Fractures of the hip and osteoporosis. The role of bone substitutes. J Bone Joint Surg Br. 2009;91-B:294-303. https://www.ncbi.nlm.nih.gov/pubmed/19258602

Kammerlander C et al. Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury 2011;42:1484-1490. https://www.ncbi.nlm.nih.gov/pubmed/21855063

Boner V et al. Temperature evaluation during PMMA screw augmentation in osteoporotic bone-an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 2009 Aug;90(2):842-8. https://www.ncbi.nlm.nih.gov/pubmed/19353575

Sermon A et al. Cement augmentation of hip implants in osteoporotic bone: how much cement is needed and where should it go? J Orthop Res. 2014 Mar;32(3):362-8. https://www.ncbi.nlm.nih.gov/pubmed/24259367

Li S et al. Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 1999 Nov;17:891-899. https://www.ncbi.nlm.nih.gov/pubmed/10632456

Varga P et al. Prophylactic augmentation of the osteoporotic proximal femur – mission impossible? Bonekey Rep 2016 Dec 7;5:854. https://www.ncbi.nlm.nih.gov/pubmed/28018586

Raas C et al. Prophylactic augmentation of the proximal femur: an investigation of two techniques. Arch Orthop Trauma Surg 2016;136:345-351. https://www.ncbi.nlm.nih.gov/pubmed/26749332

Hanke M et al. Prevention of cement leakage into the hip joint by a standard cement plug during PFN-A cement augmentation: a technical note. Arch Orthop Trauma Surg 2016;136:747-750. https://www.ncbi.nlm.nih.gov/pubmed/27010468

Erhart s et al. Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the proximal femur nail antirotation. Injury 2011; 42:322-1327. https://www.ncbi.nlm.nih.gov/pubmed/21601203

Mereddy P et al. The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury 2009;40:428-432. https://www.ncbi.nlm.nih.gov/pubmed/19230885

Tucker A et al. Fatigue failure of the cephalomedullary nail: revision options, outcomes and review of the literature. Eur J Orthop Surg Traumatol. 2018 Apr;28(3):511-520. https://www.ncbi.nlm.nih.gov/pubmed/29043506

Goffin JM et al. Does bone compaction around the helical blade of a proximal femoral nail anti-rotation (PFNA) decrease the risk of cut-out?: A subject-especific computational study. Bone Joint Res 2013 May;2(5):79-83. https://www.ncbi.nlm.nih.gov/pubmed/23673407

Born CT et al. Hip screw migration testing: first results for hip screws and helical blade utilizing a new oscillating test method. J Orthop Res 2011 May;29(5):760-6. https://www.ncbi.nlm.nih.gov/pubmed/20830738

Kraus M et al. Clinical evaluation of PFNA (R) and relationship between the tip-apex distance and mechanical failure. Unfallchirurg 2011;114(6):470-478. https://www.ncbi.nlm.nih.gov/pubmed/21626197

Von der Linden P et al. Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 2006;24:2230-2237. https://www.ncbi.nlm.nih.gov/pubmed/17001708

Bartucci EJ et al. The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 1985 Sep;67(7):1094-1107. https://www.ncbi.nlm.nih.gov/pubmed/4030829

Yamada K et al. Clinical outcome of percutaneous osteoplasty for pain caused by metastatic bone tumors in the pelvis and femur. J Anesth 2007;21:277-81. https://www.ncbi.nlm.nih.gov/pubmed/17458661

Hierholzer J et al. Percutaneous osteoplasty as a treatment for painful malignant bone lesions of the pelvis and femur. J Vasc Interv Radiol 2003 Jun;14(6):773-7. https://www.ncbi.nlm.nih.gov/pubmed/12817045

Kang HG et al. The treatment of metastasis to the femoral neck using percutaneous hollow perforated screws with cement augmentation. J Bone Joint Surg Br 2009;91-B:1078-82. https://www.ncbi.nlm.nih.gov/pubmed/19651838

Sermon A et al. Potential of polymethylmethacrylate cement-augmented helical proximal nail antirotation blades to improve implant stability – a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg. 2012 Feb;72(2):E54-9. https://www.ncbi.nlm.nih.gov/pubmed/22439233

Stoffel K et al. A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clinical Biomechanics 2008;23:45-51. https://www.ncbi.nlm.nih.gov/pubmed/17964016

Hisatome T et al. Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement. J Biomed Mater Res. 2002 Mar;59(3):490-8. https://www.ncbi.nlm.nih.gov/pubmed/11774307

Fliri L et al. Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 2012;72(4):1098-1101. https://www.ncbi.nlm.nih.gov/pubmed/22491634

Goetzen M et al. Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage? An in vivo study in sheep stifle joints. Medicine (Baltimore) 2015 Jan;94(3):e414. https://www.ncbi.nlm.nih.gov/pubmed/25621690

Mattsson P et al. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br. 2005 Sep;87(9):1203-1209. https://www.ncbi.nlm.nih.gov/pubmed/16129742

Mattsson P et al. Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures: a randomized study of 118 patientes. Acta Orthop 2006;77:251-6. https://www.ncbi.nlm.nih.gov/pubmed/16752286

Publicado
2019-07-11
Sección
Articulos Originales